Eecient Algorithms for Speech Recognition Thesis Committee
نویسندگان
چکیده
Advances in speech technology and computing power have created a surge of interest in the practical application of speech recognition. However, the most accurate speech recognition systems in the research world are still far too slow and expensive to be used in practical, large vocabulary continuous speech applications. Their main goal has been recognition accuracy, with emphasis on acoustic and language modelling. But practical speech recognition also requires the computation to be carried out in real time within the limited resources|CPU power and memory size|of commonly available computers. There has been relatively little work in this direction while preserving the accuracy of research systems. In this thesis, we focus on e cient and accurate speech recognition. It is easy to improve recognition speed and reduce memory requirements by trading away accuracy, for example by greater pruning, and using simpler acoustic and language models. It is much harder to improve both the recognition speed and reduce main memory size while preserving the accuracy. This thesis presents several techniques for improving the overall performance of the CMU Sphinx-II system. Sphinx-II employs semi-continuous hidden Markov models for acoustics and trigram language models, and is one of the premier research systems of its kind. The techniques in this thesis are validated on several widely used benchmark test sets using two vocabulary sizes of about 20K and 58K words. The main contributions of this thesis are an 8-fold speedup and 4-fold memory size reduction over the baseline Sphinx-II system. The improvement in speed is obtained from the following techniques: lexical tree search, phonetic fast match heuristic, and global best path search of the word lattice. The gain in speed from the tree search is about a factor of 5. The phonetic fast match heuristic speeds up the tree search by another factor of 2 by nding the most likely candidate phones active at any time. Though the tree search incurs some loss of accuracy, it also produces compact word lattices with low error rate which can be rescored for accuracy. Such a rescoring is combined with the best path algorithm to nd a globally optimum path through a word lattice. This recovers the original accuracy of the baseline system. The total recognition time is about 3 times real time for the 20K task on a 175MHz DEC Alpha workstation. The memory requirements of Sphinx-II are minimized by reducing the sizes of the acoustic and language models. The language model is maintained on disk and bigrams and trigrams are read in on demand. Explicit software caching mechanisms e ectively overcome the disk access latencies. The acoustic model size is reduced by simply truncating precision of probability values to 8 bits. Several other engineering solutions, not explored in this thesis, can be applied to reduce memory requirements further. The memory size for the 20K task is reduced to about 30-40MB.
منابع مشابه
Harish Krishnamurthy
and MS Thesis defense Date: 13th April 2009 Automatic Speech Recognition systems (ASRs) recognize word sequences by employing algorithms such as Hidden Markov Models. Given the same speech to recognize, the different ASRs may output very similar results but with errors such as insertion, substitution or deletion of incorrect words. Since different ASRs may be based on different algorithms, it i...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملSpeech Recognition with Dynamic Bayesian
Dynamic Bayesian networks (DBNs) are a powerful and exible methodology for representing and computing with probabilistic models of stochastic processes. In the past decade, there has been increasing interest in applying them to practical problems, and this thesis shows that they can be used eeectively in the eld of automatic speech recognition. A principle characteristic of dynamic Bayesian net...
متن کاملSpeech Recognition on DSP: Algorithm Optimization and Performance Analysis
of thesis entitled: Speech Recognition on DSP: Algorithm Optimization and Performance Analysis Submitted by YUAN MENG for the degree of Master of Philosophy in Electronic Engineering at The Chinese University of Hong Kong in July 2004. This thesis describes the exploitation of state-of-the-art automatic speech recognition (ASR) techniques for DSP-based embedded applications. Automatic speech re...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996